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Abstract

In this paper, we developed a Stroh-type formalism for anti-plane deformation and then investigated the fracture

mechanics for an elliptical cavity in a magnetoelectroelastic solid under remotely uniform in-plane electromagnetic and/

or anti-plane mechanical loading, which allowed us to take the electromagnetic field inside the cavity into account.

Reducing the cavity into a crack, we had explicit solutions in closed forms for a mode III crack, which included the

extreme cases for an impermeable crack and a permeable crack. The results were illustrated with plots, showing that in

the absence of mechanical loads, an applied electric or magnetic field, positive or negative, always tended to close the

crack. On the other hand, in the presence of a mechanical load, a negative electric or magnetic field retarded crack

growth, while a positive field could either enhance or retard crack propagation, depending on the strengths of the

applied electric/magnetic fields and the level of the mechanical load as well. In other words, the effect of electric/

magnetic fields on the fracture behavior is mechanical load-dependent.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite materials consisting of a piezoelectric phase and a piezomagnetic phase simultaneously

process piezoelectric, piezomagnetic and magneto-electric effects, and thus they have wide applications in

microwave electronics, optoelectronics and electronic instrumentation (Van Run et al., 1974). Due to multi-

field-coupled effects, a magnetic field may induce an electric field and an elastic field in a magnetoelec-

troelastic solid, and vise versa. The coupled properties of piezoelectric–piezomagnetic composites offer

great opportunities for engineers to create intelligent structures and devices that are capable of respond-

ing to internal and/or environment changes. However, defects are often unavoidable in such materials

and affect the performance and reliability of the end products. Thus, in recent years, the study of
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magnetoelectroelastic materials with defects has received considerable interests. Chung and Ting (1995)

addressed two-dimensional (2D) Green functions for a magnetoelectroelastic anisotropic medium with an

elliptical cavity or rigid inclusion. Pan (2002) obtained the three-dimensional Green functions in anisotropic

magnetoelectroelastic bimaterials. Liu et al. (2001) derived Green’s functions for an elliptical cavity by
taking into account the electric–magnetic fields inside the cavity. They also gave the intensity factors

associated with cracks in a closed form. Wang and Shen (2002) presented a general solution of three-

dimensional (3D) problems in magnetoelectroelastic media. Pan (2002) derived the 3D Green functions in

anisotropic magnetoelectroelastic bimaterials. Gao et al. (2003a,b) studied the single and collinear per-

meable crack problems using an elliptical-cavity-based approach and a crack-based method, respectively.

They presented the explicit solutions for the electric/magnetic fields both inside and outside the cracks, and

for the field intensity factors. Recently, Wang and Mai (2003) gave closed-form expressions for the energy

release rate of an impermeable or permeable crack in a piezomagnetic/piezoelectric solid. However, it
should be noted that all these works for crack problems were made based on the mathematical crack

assumption that a crack was a slit with a zero width and thus did not take the effect of initial crack width or

crack opening into account. As a result, it is shown from the available solutions for a permeable mathe-

matical crack that electric–magnetic loading has no influence on the crack growth. A real crack, however,

has a finite non-zero width. Zhang (1994), Zhang and Tong (1996) and Zhang et al. (1998) studied the crack

width effect for piezoelectric materials, showing that the crack width has great influence on the crack

growth because of the existence of electric field inside the crack. In the present work we shall explore the

effects of electric–magnetic fields on the fracture behavior of a mode III crack in a magnetoelectroelastic
solid under mechanical, electrical and/or magnetic loading. In addition, we shall develop a methodology, a

Stroh-type formalism for anti-plane deformation of magnetoelectroelastic materials.

This work is organized as follows: Section 2 gives basic governing equations for a linear magnetoelec-

troelastic solid and the Stroh-type formalism for anti-plane deformation. This formalism allows one to

extend easily the present results to complicated generalized 2D cases. Electric/magnetic fields inside the

crack and the field intensity factors are derived in Section 3. Section 4 presents an explicit solution for the

energy release rate. The corresponding results for permeable and impermeable cracks are also given as

special cases. In Section 5, numerical results are presented to graphically show the effects of electric/
magnetic fields on the energy release rate. Finally, Section 6 concludes the present work.
2. Basic equations

For a linear magnetoelectroelastic solid in a rectangular coordinate system, xiði ¼ 1; 2; 3Þ, in the absence

of body forces, electric charge density and electric current, the complete set of the basic equations is
rij ¼ Cijklekl � ekijEk � qkijHk;

Di ¼ eiklekl þ jikEk þ dikHk;

Bi ¼ qiklekl þ dikEk þ likHk;

ð1Þ

rij;j ¼ 0; Di;i ¼ 0; Bi;i ¼ 0; ð2Þ

eij ¼
1

2
ðui;j þ uj;iÞ; ð3aÞ

Ei ¼ �u;i; ð3bÞ

Hi ¼ �w;i; ð3cÞ
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where a comma in the subscripts stands for partial differentiation; repeated indices denote summation; rij,

eij, Ei, Di, Hi and Bi are the stress, strain, electric field, electric displacement, magnetic field and magnetic

induction, respectively; ukðk ¼ 1; 2; 3Þ, u and w stand for the displacement, the electric potential and the

magnetic potential, respectively; ekij, qkij and dik are the piezoelectric, piezomagnetic and magneto-electric
coupling tensors, respectively; Cijkl, jik and lil are the elastic stiffness tensor, the dielectric permittivities and

the magnetic permeabilities, respectively. The material constants have the following symmetries:
Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij; ekij ¼ ekji; qkij ¼ qkji; jkl ¼ jlk; dkl ¼ dlk; lkl ¼ llk:
Moreover, Cijkl, jkl and lkl are positive definite in the sense that
Cijkleijekl > 0; jklEkEl > 0; lklHkHl > 0;
for non-zero eij, Ek and Hk. For a transversely isotropic magnetoelectroelastic solid with the x3 axis being

the symmetry axis, the constitutive equation (1) can be written in the Voigt form as
r11

r22

r33

r32

r31

r12

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 ðc11 � c12Þ=2

2
66666664

3
77777775

e11
e22
e33
2e32
2e31
2e12

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

�

0 0 e31
0 0 e31
0 0 e33
0 e15 0

e15 0 0

0 0 0

2
66666664

3
77777775

E1

E2

E3

8<
:

9=
;

�

0 0 q31

0 0 q31

0 0 q33

0 q15 0

q15 0 0

0 0 0

2
66666664

3
77777775

H1

H2

H3

8<
:

9=
;; ð4Þ

D1

D2

D3

8<
:

9=
; ¼

0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

2
4

3
5

e11
e22
e33
2e32
2e31
2e12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ
j11 0 0

0 j22 0

0 0 j33

2
4

3
5 E1

E2

E3

8<
:

9=
;

þ
d11 0 0

0 d22 0

0 0 d33

2
4

3
5 H1

H2

H3

8<
:

9=
;; ð5Þ

B1

B2

B3

8<
:

9=
; ¼

0 0 0 0 q15 0

0 0 0 q15 0 0

q31 q31 q33 0 0 0

2
4

3
5

e11
e22
e33
2e32
2e31
2e12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ
d11 0 0

0 d22 0

0 0 d33

2
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3
5 E1

E2

E3

8<
:

9=
;

þ
l11 0 0

0 l22 0

0 0 l33

2
4

3
5 H1

H2

H3

8<
:

9=
;: ð6Þ
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Since the anti-plane solution is relatively simple and can be written in an explicit form, thereby clearly

providing physical insights into the fracture behavior of magnetoelectroelastic materials, we shall study a

mode III crack in the isotropic plane in the present work. For the two-dimensional anti-plane deformation,

the out-of-plane displacement and the in-plane electric/magnetic fields are functions of x1 and x2 only, that
u1 ¼ u2 ¼ 0; u3 ¼ u3ðx1; x2Þ; u ¼ uðx1; x2Þ; w ¼ wðx1; x2Þ: ð7Þ

In this case, we have by using (3)–(7) that
r3k ¼ c44
ou3

oxk
þ e15

ou
oxk

þ q15

ow
oxk

; ð8Þ

Dk ¼ e15
ou3

oxk
� j11

ou
oxk

� d11

ow
oxk

; ð9Þ

Bk ¼ q15

ou3

oxk
� d11

ou
oxk

� l11

ow
oxk

ðk ¼ 1; 2Þ: ð10Þ
Furthermore, substituting Eqs. (8)–(10) into Eq. (2) results in
B0r2u ¼ 0; ð11Þ

where r2 ¼ o2=ox21 +o2=ox22, and
u ¼ ½u3;u;w�T; ð12Þ

is called the generalized displacement vector, and
B0 ¼
c44 e15 q15

e15 �j11 �d11
q15 �d11 �l11

2
4

3
5: ð13Þ
Since B0 is non-singular, from Eq. (11), we have
r2u ¼ 0: ð14Þ

The general solution of Eq. (14) is simply
u ¼ fðzÞ þ fðzÞ; z ¼ x1 þ ix2; ð15Þ
where fðzÞ is an analytic function.

To develop a Stroh-type formalism for anti-plane deformation, we introduce a generalized stress

function vector, /, such that
R1 ¼ ½r31;D1;B1�T ¼ �/;2; R2 ¼ ½r32;D2;B2�T ¼ /;1: ð16Þ
Substituting Eq. (8)–(10) into Eq. (16) yields
�/;2 ¼ B0

of

ox1
þ B0

of

ox1
; ð17Þ

/;1 ¼ B0

of

ox2
þ B0

of

ox2
: ð18Þ
Thus, we obtain from (17) or (18) that
/ ¼ iB0fðzÞ � iB0fðzÞ: ð19Þ
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To let Eqs. (15) and (19) appear like those in the Stroh formalism, we rewrite them as
u ¼ AfðzÞ þ AfðzÞ; ð20Þ

/ ¼ BfðzÞ þ BfðzÞ; z ¼ x1 þ ix2; ð21Þ

where
A ¼ I; B ¼ iB0: ð22Þ

Eqs. (20) and (21) can be written also as
/ ¼ 2Re ½kðzÞ�; ð23Þ

u ¼ 2Im ½YkðzÞ�; ð24Þ

where
kðzÞ ¼ BfðzÞ; ð25aÞ

Y ¼ iAB�1: ð25bÞ

From Eqs. (22) and (25b), we find
Y ¼ B�1
0 : ð26Þ
Let us define
H ¼ 2Re ½Y�: ð27Þ

Since Y is real in the present case, Eq. (27) is simplified to
H ¼ 2Y: ð28Þ

Using Eqs. (13) and (26), we have
H ¼ 2Y ¼ 2

r

j11l11 � d2
11 e15l11 � d11q15 j11q15 � d11e15

e15l11 � d11q15 �q2
15 � c44l11 c44d11 þ e15q15

j11q15 � d11e15 c44d11 þ e15q15 �e215 � c44d2
11

2
4

3
5; ð29Þ
where
r ¼ c44j11l11 þ e215l11 þ j11q2
15 � 2d11e15q15 � c44d2

11:
The above derivations indicate that we will have the stress, electric, and magnetic fields if the complex

potential fðzÞ is available. The complex potential vector, fðzÞ, is determined from boundary conditions. All

the deviations described above like those in the Stroh formalism except that the eigen-roots are all

‘‘i ¼
ffiffiffiffiffiffiffi
�1

p
’’ in the present study of anti-plane deformation.
3. Electric–magnetic field inside the crack and field intensity factors

Consider an elliptical cavity in a transversely isotropic magnetoelectroelastic solid infinitely large. The

cavity is filled with air of a dielectric permittivity, j0, and a magnetic permeability, l0. It is assumed that the

electric and magnetic poling directions are both along the positive x3 axis and the isotropic plane is in

the x1–x2 plane. The solid is under uniform remote anti-plane shear and in-plane electric–magnetic field
loadings, R21 ¼ ½r1

32;D
1
2 ;B1

2 �T and R11 ¼ ½r1
31;D

1
1 ;B1

1 �T, as shown in Fig. 1. In the following analysis, we

assume that the cavity surface is free of traction, external charge and electric current.
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Fig. 1. Anti-plane deformation of a magnetoelectroelastic solid with an elliptical cavity.
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Inside the cavity, the electric field is uniform and the potential functions can be expressed as
/0 ¼ ðD0
2x1 � D0

1x2Þi2 þ ðB0
2x1 � B0

1x2Þi3; ð30Þ

u0 ¼ �E0
1x1 � E0

2x2; ð31Þ

w0 ¼ �H 0
1 x1 � H 0

2 x2; ð32Þ

where i2 ¼ ½0; 1; 0�T, i3 ¼ ½0; 0; 1�T, and D0

k , B
0
k , H

0
k and E0

k are the components of the electric and magnetic

fields, respectively, which are constant and will be determined by the loading condition. In the solid, the

complex function fðzÞ takes the form:
fðzÞ ¼ c1zþ f0ðzÞ; ð33Þ

where c1 is a constant related to the loading condition at infinity, and f0ðzÞ is an unknown complex
function, which vanishes at infinity, i.e., f0ð1Þ ¼ 0. Substituting Eq. (33) into Eqs. (23) and (24) and noting

that Y is real, we have
/ ¼ R21x1 � R11x2 þ 2Re ½k0ðzÞ�; ð34Þ

u ¼ �E1
1 x1 � E1

2 x2 þ 2Im ½Yk0ðzÞ�2; ð35Þ

u ¼ �H1
1 x1 � H1

2 x2 þ 2Im ½Yk0ðzÞ�3; ð36Þ
where ½ �J stands for the J th row of the vector [ ] and k0ðzÞ ¼ Bf0ðzÞ.
On the cavity surface, the continuity of the appropriate field variables requires
/0 ¼ /; u ¼ u0; w ¼ w0: ð37Þ
Let us introduce the transformation function,
zðfÞ ¼ Rðf þ mf�1Þ with R ¼ aþ b
2

and m ¼ a� b
aþ b

;

which maps the elliptical cavity in the z-plane into a unit circle in the f-plane. On the cavity surface, one has

f ¼ r ¼ eih. Then, Eq. (37) becomes
/0ðrÞ ¼ /ðrÞ; uðrÞ ¼ u0ðrÞ; wðrÞ ¼ w0ðrÞ: ð38Þ
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Substituting Eqs. (30)–(32) and Eqs. (34)–(36) together with
x1 ¼ a cos h ¼ 1

2
a

1

r

�
þ r

�
;

x2 ¼ b sin h ¼ 1

2
ib

1

r

�
� r

�
;

into Eq. (38), we obtain
k0ðzÞ ¼ � 1

2
f�1ðzÞp; ð39Þ
where
f�1ðzÞ ¼ z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2 þ b2

p

a� b
; ð40Þ

p ¼ ½ar1
32 � ibr1

31; aDD
1
2 � ibDD1

1 ; aDB1
2 � ibDB1

1 �T; ð41Þ

DD1
k ¼ D1

k � D0
k ; DB1

k ¼ B1
k � B0

k ; ðk ¼ 1; 2Þ: ð42Þ
The four unknown D0
k and B0

k in Eq. (42) can be determined from the following four equations:
Re ½Y21M
1� þ aRe ½Y22�DD1

2 þ aRe ½Y23�DB1
2 ¼ bðE1

2 � E0
2Þ; ð43Þ

Re ½Y31M
1� þ aRe ½Y32�DD1

2 þ aRe ½Y33�DB1
2 ¼ bðH1

2 � H 0
2 Þ; ð44Þ

Im ½Y21M
1� � bRe ½Y22�DD1

1 � bRe ½Y23�DB1
1 ¼ �aðE1

1 � E0
1Þ; ð45Þ

Im ½Y31M
1� � bRe ½Y32�DD1

1 � bRe ½Y33�DB1
1 ¼ �aðH1

1 � H 0
1 Þ; ð46Þ
where
M1 ¼ ½ar1
32 � ibr1

31�: ð47Þ
Since Y is real and 2Re ½Y� ¼ H in the present case, Eqs. (43)–(46) can be reduced further to
H21r
1
32 þ H22DD1

2 þ H23DB1
2 ¼ 2aðE1

2 � E0
2Þ; ð48Þ

H31r
1
32 þ H32DD1

2 þ H33DB1
2 ¼ 2aðH1

2 � H 0
2 Þ; ð49Þ

aðH21r
1
31 þ H22DD1

1 þ H23DB1
1 Þ ¼ 2ðE1

1 � E0
1Þ; ð50Þ

aðH31r
1
31 þ H32DD1

1 þ H33DB1
1 Þ ¼ 2ðH1

1 � H 0
1 Þ; ð51Þ
where a ¼ b=a.
Using the relationships D0

2 ¼ j0E0
2, B

0
2 ¼ l0H

0
2 and Eq. (42), we find
E1
2 � E0

2 ¼ E1
2 þ DD1

2 � D1
2

j0

; H1
2 � H 0

2 ¼ H1
2 þ DB1

2 � B1
2

l0

: ð52Þ
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Substituting Eq. (52) into Eqs. (48) and (49) leads to
H21r
1
32 þ H22

�
� 2a

j0

�
DD1

2 þ H23DB1
2 ¼ 2aE1

2 � 2a
j0

D1
2 ; ð53Þ

H31r
1
32 þ H32DD1

2 þ H33

�
� 2a

l0

�
DB1

2 ¼ 2aH1
2 � 2a

l0

B1
2 : ð54Þ
Define two parameters ke and km as
ke ¼
a
be

; km ¼ a
bm

; ð55Þ
in which
be ¼ j0=j
eff ; bm ¼ l0=l

eff ; jeff ¼ �1=Y22; leff ¼ �1=Y33;
where jeff and leff are the effective dielectric permittivity and magnetic permeability of the material,

respectively. The two parameters ke and km characterize the permeability of the crack to electric/magnetic

fields. The crack is impermeable if ke ! 1 and km ! 1, permeable if ke ¼ km ¼ 0, and semi-permeable if
ke and km are non-zero finite constants. A parameter similar to ke was introduced by McMeeking (1989),

Zhang and Tong (1996), and Zhang et al. (1998) in their studies of the fracture of dielectric and piezoelectric

materials, respectively. Note that ke and km are mutually dependent parameters with km
ke
¼ j0

l0

Y22
Y33

being con-

stant for a given material. This means that if a crack is electrically permeable (impermeable), the crack is

also magnetically permeable (impermeable). Using Eq. (55), we can rewrite Eqs. (53) and (54) as
H21r
1
32 þ H22ð1þ keÞDD1

2 þ H23DB1
2 ¼ 2aE1

2 þ keH22D1
2 ; ð56Þ

H31r
1
32 þ H32DD1

2 þ H33ð1þ kmÞDB1
2 ¼ 2aH1

2 þ kmH33B1
2 : ð57Þ
For a semi-permeable crack with a ! 0, while ke and km being kept finite, neglecting a in Eqs. (50), (51),

(56) and (57) results in
E0
1 ¼ E1

1 ; H 0
1 ¼ H1

1 ; ð58Þ

H22ð1þ keÞDD1
2 þ H23DB1

2 ¼ keH22D1
2 � H21r

1
32; ð59Þ

H32DD1
2 þ H33ð1þ kmÞDB1

2 ¼ kmH33B1
2 � H31r

1
32: ð60Þ
Solving Eqs. (59) and (60) gives
DD1
2 ¼ 1

g
f½H23H31 � ð1þ kmÞH21H33�r1

32 þ keð1þ kmÞH33H22D1
2 � kmH23H33B1

2 g; ð61Þ

DB1
2 ¼ 1

g
f½H32H21 � ð1þ keÞH31H22�r1

32 þ kmð1þ keÞH22H33B1
2 � keH32H22D1

2 g; ð62Þ
where
g ¼ H22H33ð1þ keÞð1þ kmÞ � H 2
23:
We define the intensity factor vector as
k ¼ ðkr; kD; kBÞT ¼ lim
x1!a

ffiffiffiffiffiffi
2p

p
ðx1 � aÞ1=2/;1ðx1Þ: ð63Þ
Substituting Eq. (34) together with Eq. (39) into Eq. (63) results in
k ¼
ffiffiffiffiffiffi
pa

p
ðr1

32;DD
1
2 ;DB1

2 ÞT; ð64Þ
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in which DD1
2 and DB1

2 are determined from Eqs. (61) and (62). Eq. (64) shows that the stress intensity

factor relates to only the applied mechanical load, while the electric/magnetic intensity factors are

dependent on mechanical and electric–magnetic loads, material constants as well as the values of ke and km,

which are related to the crack opening.
4. Energy release rate

Zhang et al. (2002) discussed in detail that four thermodynamic potentials can be used to calculate the

energy release rate for crack propagation in a piezoelectric material. The general energy balance for an

infinitesimal crack extension can be written in the form
oP ¼ oW � oU ; ð65Þ

where W is the generalized work done by external mechanical and electrical–magnetic loads, U is the

generalized mechanical and electrical–magnetic energy stored inside the body of interest, and oP denotes

the change in the potential during creating the new crack surface. The generalized work and the generalized

stored energy are given by
W ¼
Z

C
ðrijnjui þ Diniu þ BiniwÞdC; ð66Þ

U ¼
Z Z

X
hdX; ð67Þ
respectively, where C denotes a sufficiently large contour around the crack, X is the integration domain

enclosed by C, ui is the mechanical displacement, Dini and Bini are the prescribed boundary values of the

electric displacement and the magnetic induction, respectively, and h is the electric–magnetic enthalpy per

unit volume that
h ¼ 1

2
rijeij �

1

2
DiEi �

1

2
BiHi: ð68Þ
The energy release rate, G, is defined as
G ¼ 1

2

oP
oa

: ð69Þ
where
P ¼ W � U : ð70Þ

Using Eqs. (70), and (66)–(68), we have
P ¼ � 1

2

Z
C
d/T � u: ð71Þ
In the present work, we assume that the crack or cavity propagate in a self-similar fashion. Based on the
assumption and some algebraic manipulations, we obtain, by using Eqs. (71), (20) and (21) that
G ¼ pa
4

RT
21HP21; ð72Þ
where
P21 ¼ ½r1
32;D

1
2 � D0

2;B
1
2 � B0

2�
T
: ð73Þ
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Since R21 ¼ P21 þ i2D0
2 þ i3B0

2, Eq. (72) can be rewritten as
G ¼ pa
4

PT
21HP21 þ pa

4
iT2HP21D0

2 þ
pa
4
iT3HP21B0

2; ð74Þ
which can be further simplified as
G ¼ 1

4
kTHkþ pa

4
iT2HP21D0

2 þ
pa
4
iT3HP21B0

2; ð75Þ
where k is the intensity factor vector defined by Eq. (64).
Eq. (74) or (75) can be further simplified for special cases. For electrically and magnetically impermeable

cracks, D0
2 ¼ B0

2 ¼ 0, Eq. (74) becomes
G ¼ pa
4
ðr1

32;D
1
2 ;B1

2 ÞHðr1
32;D

1
2 ;B1

2 ÞT ð76Þ
or
G ¼ 1

4
kT
impHkimp; ð77Þ
where kimp is the intensity factor vector for impermeable cracks that
kimp ¼
ffiffiffiffiffiffi
pa

p
ðr1

32;D
1
2 ;B1

2 ÞT: ð78Þ
For a permeable crack, ke ¼ km ¼ 0, one has from Eqs. (61) and (62) that
DD1
2 ¼ D1

2 � D0
2 ¼ �cDr1

32 ð79Þ

DB1
2 ¼ B1

2 � B0
2 ¼ �cBr1

32; ð80Þ
where
cD ¼ H21H33 � H23H31

H22H33 � H 2
23

; cB ¼ H31H22 � H32H21

H22H33 � H 2
23

:

In the mean time, using Eq. (73), one obtains
iT2HP21 ¼ H21r
1
32 þ H22ðD1

2 � D0
2Þ þ H23ðB1

2 � B0
2Þ: ð81Þ
Substituting Eqs. (79) and (80) into Eq. (81) leads to
iT2HP21 ¼ 0: ð82Þ
Similarly, we have
iT3HP21 ¼ 0: ð83Þ
Substituting Eqs. (82) and (83) into Eq. (74) leads to
G ¼ pa
4
ðr1

32;D
1
2 � D0

2;B
1
2 � B0

2ÞHðr1
32;D

1
2 � D0

2;B
1
2 � B0

2Þ
T
; ð84Þ
that is
G ¼ 1

4
kT
pHkp; ð85Þ
where kp is the intensity factor vector for the permeable crack in the form of Eq. (64), in which the DD1
2 and

DB1
2 are given by Eqs. (79) and (80). In summary, for a permeable crack, we have
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E0
1 ¼ E1

1 ; H 0
1 ¼ H1

1 ; ð86Þ

D0
2 ¼ D1

2 þ cDr1
32; ð87Þ

B0
2 ¼ B1

2 þ cBr1
32; ð88Þ

kr ¼
ffiffiffiffiffiffi
pa

p
r1
32; kD ¼ �cDkr; kB ¼ �cBkr; ð89Þ

G ¼ pa
4
H �

11ð0Þðr1
32Þ

2
; ð90Þ
where
H �
11ð0Þ ¼ H11 �

H 2
12H33 � 2H12H23H31 þ H 2

13H22

H22H33 � H 2
23

: ð91Þ
For a semi-permeable crack, ke and km have finite non-zero values. In this case, Eq. (72) can be expended

into
4G=pa ¼ r1
32ðH11r

1
32 þ H12D1

2 þ H13B1
2 Þ þ DD1

2 ðH21r
1
32 þ H22D1

2 þ H23B1
2 Þ

þ DB1
2 ðH31r

1
32 þ H32D1

2 þ H33B1
2 Þ: ð92Þ
Below we present explicit expressions of G for some special cases by substituting Eqs. (61) and (62) into Eq.

(92):

(i) If only r1
32 is applied, the result of (92) is
G

Hr

Hr

G

HD

G

¼ pa
4
Hrðr1

32Þ
2
; ð93Þ
where
¼ H11 �
H 2

12H33ð1þ kmÞ � 2H12H23H31 þ H 2
13H22ð1þ keÞ

H22H33ð1þ keÞð1þ kmÞ � H 2
23

: ð94Þ
For ke ¼ km ¼ 0, Eq. (94) reduces to
¼ H11 �
H 2

12H33 � 2H12H23H31 þ H 2
13H22

H22H33 � H 2
23

¼ H �
11ð0Þ: ð95Þ
In this case, Eq. (93) becomes (90).
(ii) If only D1

2 is applied, we have from (92) that
¼ � pa
4
HDðD1

2 Þ2; ð96Þ
where
¼ keH22H 2
23 � keð1þ kmÞH 2

22H33

H22H33ð1þ keÞð1þ kmÞ � H 2
23

: ð97Þ
(iii) If only B1
2 is applied, we have
¼ � pa
4
HBðB1

2 Þ2; ð98Þ
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where
HB
 ¼ kmH33H 2
23 � kmð1þ keÞH 2

33H22

H22H33ð1þ keÞð1þ kmÞ � H 2
23

: ð99Þ
5. Numerical results

Consider a BaTiO3–CoFe2O4 composite, where the matrix is the CoFe2O4 and the reinforced phase is

the BaTiO3. Material constants of each phase can be found in the work of Li and Dunn (1998). Obviously,

the effective properties of the composite depend on the volume fraction of its constituents. Many investi-
gators, e.g., Li and Dunn (1998), Huang et al. (2000), Wu and Huang (2000), Li (2000), Aboudi (2001),

Chen et al. (2002) and others, have investigated the effective properties of magnetoelectroelastic composites

based on different approaches. Recently, Sih and Song (2003) presented some effective properties of the

BaTiO3–CoFe2O4 composite for different volume fraction of BaTiO3. In the following numerical calcula-

tion, the used effective elastic and piezoelectric properties for a model piezoelectric/magnetic composite are

selected as follows:
c44 ¼ 43� 109 Pa; e15 ¼ 11:6 C=m2; j11 ¼ 11:2� 10�9 C2=Nm2;

d11 ¼ 0; q15 ¼ 550 N=Am; l11 ¼ 590� 10�6 N s2=C2:
In addition, the dielectric permittivity and the magnetic permeability of air are respectively:
j0 ¼ 8:85� 10�12 C2=Nm2; l0 ¼ 1:26� 10�6 N s2=C2:
Numerical results are presented in Figs. 2–11, in which Ĝ ¼ 4G=pa. The units of r1
32, D

1
2 ðD0

2Þ, B1
2 ðB0

2Þ and G
are in Pa, C/m2, N/Am and N/m, respectively.

The numerical results for the selected model material are summarized as follows:

(1) Fig. 2 illustrates the electric field inside the crack as a function of ke under a load of r1
32 ¼ 105,

B1
2 ¼ 10�1, or D1

2 ¼ 10�5 only, whereas Fig. 3 plots the magnetic field inside the crack as a function
of km under a load of r1

32 ¼ 104, B1
2 ¼ 10�3, or D1

2 ¼ 10�4 only. The results show that the signs of

the electric field induced by the applied mechanical and magnetic loadings are opposite to that induced

by the applied electric field, and the signs of the magnetic field induced by the applied mechanical and

electric loadings are opposite to that induced by the applied magnetic field. When ke ¼ km ¼ 0, i.e., for
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Ĝ

32σ 8

Fig. 9. Ĝ vs. r1
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permeable cracks, the electric (or magnetic) field inside the crack is independent of the applied magnetic

(or electric) field. For an impermeable crack, ke ! 1 and km ! 1, both the electric and magnetic fields

approach zero.

(2) Figs. 4–6 show the influence of crack permeability on the energy release rate under different loading

conditions. Under purely mechanical loading, the energy release rate Ĝ is always positive (Fig. 4). A
permeable crack gives the highest value of Ĝ, while an impermeable crack yields the lowest value of

Ĝ. If a purely electric or magnetic field is applied, the energy release rate is zero for a permeable crack,

and negative for an impermeable or semi-permeable crack, as shown in Figs. 5 and 6. For a permeable

crack under combined mechanical, electric and magnetic loading, the energy release rate is dependent

on only the mechanical load, which is shown by the curve for ke ¼ 0 in Fig. 4.

(3) Figs. 7 and 8 show, respectively, the effects of the electric and magnetic fields on the energy release rate

for an impermeable crack. For a given mechanical tension load, the electric/magnetic fields can either

increase or decrease Ĝ, which is dependent on the ratio of the applied electric/magnetic loading to the
applied mechanical loading.
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(4) Figs. 9–11 give the energy release rate of a semi-permeable crack with a value of a ¼ b=a ¼ 10�2. Under

combined loading, the energy release rate can be positive or negative under an electric or magnetic load,
depending on the value of the applied mechanical load, as shown in Fig. 9. For a given electric/magnetic

loading, the mechanical load must reach a critical value before the energy release rate becomes positive.

Obviously, the critical value of the mechanical load depends on the strengths of the electric/magnetic

load. Fig. 10 shows the energy release rate as a function of the applied electric load, D1
2 , with

B1
2 ¼ 0 and r1

2 ¼ 0, and B1
2 ¼ 0 and r1

2 ¼ 106. In the absent of mechanical loading, both positive

and negative electric loads lower the energy release rate. However, if a mechanical loading is applied

also, a negative electric load decreases Ĝ, but a positive electric load can either increase or decrease

Ĝ. This means that, for a fixed mechanical load, the effect of positive electric loading on the fracture
behavior can be different from that of negative electric loading. Similarly conclusions can be drawn

from Fig. 11 for the effects of magnetic loading.
6. Concluding remarks

Based on linear magnetoelectroelasticity, we study a crack in a magnetoelectroelastic solid under anti-

plane deformation. To take the effect of the electric/magnetic fields inside the crack into account, the crack

is modeled as a slender elliptical cavity containing air. Then, explicit expressions of the energy release rate

are given for the elliptical flaw. Numerical results are also presented to show the variation of electro-

magneticelastic fields inside the crack and the values of the energy release rate with the flaw size. For a

mathematical permeable crack with zero width, theoretical results show that the energy release rate is
independent of the applied electric/magnetic loading. However, for a crack with a finite non-zero width,

numerical results for a selected model material show that an applied magnetic field can induce a high

electric field inside the crack and vise versa. In the absence of mechanical loading, an applied electric or

magnetic load always tends to retard crack growth. However, in the presence of mechanical loading, an

applied negative electric or magnetic load retards crack growth, while an applied positive electric or

magnetic load can enhance or retard the growth. But, when the applied electric or magnetic load reaches a

sufficiently high value, whether positive or negative, it always retards crack growth, even in the presence of

mechanical load. In other words, the effect of electric/magnetic fields on the fracture behavior is mechanical
load-dependent.
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Finally, it should be noted that although the theoretical approach developed in the present study is for

anti-plane deformation, it is very similar to the Stroh formalism of generalized 2D deformation. Therefore,

we may call it the Stroh formalism for anti-plane deformation. The advantages of the Stroh formalism for

anti-plane deformation lie in that it is much easy to be used and the obtained results can be readily checked
by the conventional complex potential approach. Once one gets used to the Stroh formalism for anti-plane

deformation, he/she can employ the Stroh formalism to explore general deformation problems without any

difficulty.
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