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Abstract

In this paper, we developed a Stroh-type formalism for anti-plane deformation and then investigated the fracture
mechanics for an elliptical cavity in a magnetoelectroelastic solid under remotely uniform in-plane electromagnetic and/
or anti-plane mechanical loading, which allowed us to take the electromagnetic field inside the cavity into account.
Reducing the cavity into a crack, we had explicit solutions in closed forms for a mode III crack, which included the
extreme cases for an impermeable crack and a permeable crack. The results were illustrated with plots, showing that in
the absence of mechanical loads, an applied electric or magnetic field, positive or negative, always tended to close the
crack. On the other hand, in the presence of a mechanical load, a negative electric or magnetic field retarded crack
growth, while a positive field could either enhance or retard crack propagation, depending on the strengths of the
applied electric/magnetic fields and the level of the mechanical load as well. In other words, the effect of electric/
magnetic fields on the fracture behavior is mechanical load-dependent.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite materials consisting of a piezoelectric phase and a piezomagnetic phase simultaneously
process piezoelectric, piezomagnetic and magneto-electric effects, and thus they have wide applications in
microwave electronics, optoelectronics and electronic instrumentation (Van Run et al., 1974). Due to multi-
field-coupled effects, a magnetic field may induce an electric field and an elastic field in a magnetoelec-
troelastic solid, and vise versa. The coupled properties of piezoelectric—piezomagnetic composites offer
great opportunities for engineers to create intelligent structures and devices that are capable of respond-
ing to internal and/or environment changes. However, defects are often unavoidable in such materials
and affect the performance and reliability of the end products. Thus, in recent years, the study of
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magnetoelectroelastic materials with defects has received considerable interests. Chung and Ting (1995)
addressed two-dimensional (2D) Green functions for a magnetoelectroelastic anisotropic medium with an
elliptical cavity or rigid inclusion. Pan (2002) obtained the three-dimensional Green functions in anisotropic
magnetoelectroelastic bimaterials. Liu et al. (2001) derived Green’s functions for an elliptical cavity by
taking into account the electric-magnetic fields inside the cavity. They also gave the intensity factors
associated with cracks in a closed form. Wang and Shen (2002) presented a general solution of three-
dimensional (3D) problems in magnetoelectroelastic media. Pan (2002) derived the 3D Green functions in
anisotropic magnetoelectroelastic bimaterials. Gao et al. (2003a,b) studied the single and collinear per-
meable crack problems using an elliptical-cavity-based approach and a crack-based method, respectively.
They presented the explicit solutions for the electric/magnetic fields both inside and outside the cracks, and
for the field intensity factors. Recently, Wang and Mai (2003) gave closed-form expressions for the energy
release rate of an impermeable or permeable crack in a piezomagnetic/piezoelectric solid. However, it
should be noted that all these works for crack problems were made based on the mathematical crack
assumption that a crack was a slit with a zero width and thus did not take the effect of initial crack width or
crack opening into account. As a result, it is shown from the available solutions for a permeable mathe-
matical crack that electric-magnetic loading has no influence on the crack growth. A real crack, however,
has a finite non-zero width. Zhang (1994), Zhang and Tong (1996) and Zhang et al. (1998) studied the crack
width effect for piezoelectric materials, showing that the crack width has great influence on the crack
growth because of the existence of electric field inside the crack. In the present work we shall explore the
effects of electric-magnetic fields on the fracture behavior of a mode III crack in a magnetoelectroelastic
solid under mechanical, electrical and/or magnetic loading. In addition, we shall develop a methodology, a
Stroh-type formalism for anti-plane deformation of magnetoelectroelastic materials.

This work is organized as follows: Section 2 gives basic governing equations for a linear magnetoelec-
troelastic solid and the Stroh-type formalism for anti-plane deformation. This formalism allows one to
extend easily the present results to complicated generalized 2D cases. Electric/magnetic fields inside the
crack and the field intensity factors are derived in Section 3. Section 4 presents an explicit solution for the
energy release rate. The corresponding results for permeable and impermeable cracks are also given as
special cases. In Section 5, numerical results are presented to graphically show the effects of electric/
magnetic fields on the energy release rate. Finally, Section 6 concludes the present work.

2. Basic equations

For a linear magnetoelectroelastic solid in a rectangular coordinate system, x;(i = 1,2, 3), in the absence
of body forces, electric charge density and electric current, the complete set of the basic equations is
0ij = Cijmen — exijEx — quijH,
D; = egen + Kk + dyHy, (1)
Bi = quien + duEy + pyHy,

gijj = 0, D;; = 0, Bi,i =0, (2)
1

e = 5 (uiy + t0), (3a)

Ei = _go,h (3b)

H; = _lp,iv (30)
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where a comma in the subscripts stands for partial differentiation; repeated indices denote summation; o;;,
&5, Ei, D;, H; and B, are the stress, strain, electric field, electric displacement, magnetic field and magnetic
induction, respectively; u;(k = 1,2,3), ¢ and  stand for the displacement, the electric potential and the
magnetic potential, respectively; ey;, gi; and dy are the piezoelectric, piezomagnetic and magneto-electric
coupling tensors, respectively; Cu, ki and p;; are the elastic stiffness tensor, the dielectric permittivities and
the magnetic permeabilities, respectively. The material constants have the following symmetries:

Ciju = Ciiw = Cijie = Caijs - €wij = €wjis  Quij = Qrjis -~ Kt = Ky, g = dig, g = M-
Moreover, Ciy, ki and y,,; are positive definite in the sense that
Cijueyern >0,  wukEp >0, w,HH >0,

for non-zero ¢;, E; and H,. For a transversely isotropic magnetoelectroelastic solid with the x; axis being
the symmetry axis, the constitutive equation (1) can be written in the Voigt form as

011 [cii ¢z c3 0 0 0 T1( eu [0 0 e37
022 cp cn ci3 0 0 0 & 0 0 e E
033 _ ci3 c3 e 0 0 0 €33 _ 0 0 e3 El
03 0 0 0 C44 0 0 2832 0 €1s 0 EZ
031 0 0 0 0 Cyq 0 2831 €1s 0 0 }
12 L 0 0 0 0 0 (Cll —Clz)/z_ 2812 L 0 0 0 i
[0 0 g3
0 0
0 0 q31 H,
_ q33 29 )
0 g5 O e
3
gs 0 0
LO 0 0]
&1
D 0 0 0 0 e5 0 i” ki 0 07 (E
Dyp=|0 0 0 e 0 2:3+OK220 E,
D3 €31 €31 €33 0 O 0 2 +32 0 0 K33 E3
€31
2y,

dy 0 0 H,
—+ 0 dr 0 H, 5, (5)
0 0 dx H;

€11
B 0 0 0 0 g5 0] di 0 07(E
Bp=|0 0 0 g5 0 0 ;;3+0d220 E»
Bs g g3 g3 0 0 0 2;2 0 0 du| | E

31

2812

JOTRY 0 H,
+10 py 0 H, 0. (6)
0 0 s H;
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Since the anti-plane solution is relatively simple and can be written in an explicit form, thereby clearly
providing physical insights into the fracture behavior of magnetoelectroelastic materials, we shall study a
mode I1I crack in the isotropic plane in the present work. For the two-dimensional anti-plane deformation,
the out-of-plane displacement and the in-plane electric/magnetic fields are functions of x; and x, only, that

ur=uy =0, us=us(x;,x2), @=0x,x), Y=y, x). (7)
In this case, we have by using (3)—(7) that
(731(—0442—+€15§—i+(]152—i, (8)
Dk:elSZ_ZE_K“E?_z_dng_i’ 9)
Bk—qw%— “2—2 ungf (k=1,2). (10)
Furthermore, substituting Egs. (8)—(10) into Eq. (2) results in
ByV?u = 0, (11)
where V2 = 0% /0x} +0%/0x3, and
u=[u3, 0, 9], (12)
is called the generalized displacement vector, and
Ca €55 q1s
By=|es —xn —du|. (13)
15 —dun —Hy
Since By is non-singular, from Eq. (11), we have
Viu=0. (14)

The general solution of Eq. (14) is simply
ll:f(Z)-i-TZ), Z=X1+i)€2, (15)

where f(z) is an analytic function.
To develop a Stroh-type formalism for anti-plane deformation, we introduce a generalized stress
function vector, ¢, such that

L =03, D1, B1]' = —¢,, Lo=[032,D:,B)] =, (16)
Substituting Eq. (8)-(10) into Eq. (16) yields

of of

-4, B0a +B06x1 (17)
of of
¢1*Boa—+Boax2 (18)

Thus, we obtain from (17) or (18) that
¢ = iBof(z) — iByT(2). (19)
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To let Egs. (15) and (19) appear like those in the Stroh formalism, we rewrite them as

u = Af(z) + Af(2), (20)

¢ =Bf(z) + Bf(z), z=x +in, (21)
where

A=1 B=iB,. (22)
Egs. (20) and (21) can be written also as

¢ =2Re[k(z)], (23)

u = 2Im[Yk(z)], (24)
where

k(z) = Bf(z2), (25a)

Y = iAB. (25b)
From Egs. (22) and (25b), we find

Y=8B," (26)
Let us define

H = 2Re[Y]. (27)

Since Y is real in the present case, Eq. (27) is simplified to
H =2Y. (28)
Using Egs. (13) and (26), we have

2 K1l _d121 eistyy — duqis  Kuqis — diegs
H=2Y= g erspyy — diqis —(I%s —cuply  cadin +eisqis | (29)
Kigis —dueis  cadin + eisqis —€f5 - C44d121

where
V= 2 2 —2d — cyd?
= CaaKi1 ) + €jshy + Kugis 11€15¢15 — Caady; .

The above derivations indicate that we will have the stress, electric, and magnetic fields if the complex
potential f(z) is available. The complex potential vector, f(z), is determined from boundary conditions. All
the deviations described above like those in the Stroh formalism except that the eigen-roots are all
“i = v/—1” in the present study of anti-plane deformation.

3. Electric—magnetic field inside the crack and field intensity factors

Consider an elliptical cavity in a transversely isotropic magnetoelectroelastic solid infinitely large. The
cavity is filled with air of a dielectric permittivity, x,, and a magnetic permeability, . It is assumed that the
electric and magnetic poling directions are both along the positive x; axis and the isotropic plane is in
the x;—x; plane. The solid is under uniform remote anti-plane shear and in-plane electric-magnetic field
loadings, Xy, = [agg,D?,BgO]T and X, = [a;‘;,D‘l’O,B?‘?]T, as shown in Fig. 1. In the following analysis, we
assume that the cavity surface is free of traction, external charge and electric current.
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Fig. 1. Anti-plane deformation of a magnetoelectroelastic solid with an elliptical cavity.

Inside the cavity, the electric field is uniform and the potential functions can be expressed as

(1)0 = (Dgxl — D?Xz)iz + (ngl — B(])XQ)i3, (30)
Py = —E\x; — E3x3, (31)
lpo = —Hloxl - HSXz, (32)

where i, = [0,1,0]", is = [0,0,1]", and D, BY, H? and E? are the components of the electric and magnetic
fields, respectively, which are constant and will be determined by the loading condition. In the solid, the
complex function f(z) takes the form:

f(z) = c*z 4+ fo(z2), (33)
where ¢ is a constant related to the loading condition at infinity, and fy(z) is an unknown complex

function, which vanishes at infinity, i.e., fo(co) = 0. Substituting Eq. (33) into Egs. (23) and (24) and noting
that Y is real, we have

¢ = Eoox; — Eiootz + 2Re [ko(2)], (34)
@ = —E¥xi — EXx, + 2Im [Yko(2)], (35)
@ = —H*x; — H%x, + 21m [Yko(2)]5, (36)

where [], stands for the Jth row of the vector [] and ky(z) = Bfy(z).
On the cavity surface, the continuity of the appropriate field variables requires

¢0:¢7 §0:§00, lp:lp(] (37)
Let us introduce the transformation function,

b —-b
at and m—a

z(Q) =R +m{") with R= =

which maps the elliptical cavity in the z-plane into a unit circle in the {-plane. On the cavity surface, one has
{ = o = €. Then, Eq. (37) becomes

do(0) = d(0), @(0) = po(0), Y(o) = hy(0). (38)
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Substituting Egs. (30)-(32) and Egs. (34)—(36) together with

2(5+)
xlzacosezia —+a),

g

1 1
x2:bsin9:§ib(5—a>,

into Eq. (38), we obtain

1
k() = =53¢ @,
where
o z—VZ2—a®+ b
(2=

a—b ’
p = [ac — ib63, aADY — ibAD, aABY — ibABF]",
ADY =D — DY, ABFX=Br-B), (k=1,2).
The four unknown D{ and B in Eq. (42) can be determined from the following four equations:
Re[M™] + aRe [Yn]ADY +aRe [Vn]ABY = b(E — E3),
Re [¥5;M™] + aRe [Yn]ADS + aRe Y| ABY = b(H;* — HY),
Im [Y,;M™] — bRe [Y]AD® — bRe [Yo3]ABY = —a(E° — EY),
m [¥5,M*] — bRe Y] ADY — bRe Yy ABY = —a(H;* — HY),
where
M™ = [ac3; — ibo5)).
Since Y is real and 2Re[Y] = H in the present case, Eqs. (43)—(46) can be reduced further to
Hy 055 + HypADS + HyABY = 20(EY — EY),
Hy105 + HpADY + HyzABY = 20(Hy* — Hy),
o(Ha1 03 + HnADY + HyABY) = 2(E — EY),
a(Hy 05 + HypADY + Hy3 ABY) = 2(H® — HY),

where « = b/a.
Using the relationships DS = kEY, B = u,HY and Eq. (42), we find

ADS® — DY ABY — B®
R I AR AR

6619

(39)
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Substituting Eq. (52) into Egs. (48) and (49) leads to

20 20
Hz]O'g; + (H22 — K>AD§C + H23ABEC = ZOCE;O — KiD;O? (53)
0 0
20 20
H310'§§ + H32AD§O + (H33 — —) AB;C = ZOCH;C — _Bgo (54)
Ho Ho
Define two parameters /. and A, as
o o
;“6:77 )‘m:77 (55)
Be B
in which
B =ro/k" B = po/u, KT = —1/Yn, p = —1/Ys,
where x*" and p are the effective dielectric permittivity and magnetic permeability of the material,

respectively. The two parameters A, and A, characterize the permeability of the crack to electric/magnetic
fields. The crack is impermeable if 1. — oo and /, — oo, permeable if 1. = /2, = 0, and semi-permeable if
Je and ,, are non-zero finite constants. A parameter similar to A, was introduced by McMeeking (1989),
Zhang and Tong (1996), and Zhang et al. (1998) in their studies of the fracture of dielectric and piezoelectric

materials, respectively. Note that 4. and A,, are mutually dependent parameters with j—m = Z—g % being con-
stant for a given material. This means that if a crack is electrically permeable (impermeable), the crack is

also magnetically permeable (impermeable). Using Eq. (55), we can rewrite Eqgs. (53) and (54) as
HZIO-?Z + sz(l + ;LE)AD;)O + HQ:;AB;O = ZOCEEO + ;LeszDgc, (56)
Hglagg + H32AD;0 + H33(1 + ;»m)ABgo = ZOCHZOO + ;LlnH33B§C. (57)

For a semi-permeable crack with o — 0, while /. and 4, being kept finite, neglecting « in Egs. (50), (51),
(56) and (57) results in

EY=Ey, H)=H], (58)

Hx (1 + 4)ADY + HyABY = A HnDY — Hai0%, (59)

Hy»ADY + Hz3(1 + Am)ABS = AmH33BY — Ha05. (60)
Solving Egs. (59) and (60) gives

ADS = %{[HBHM — (1 + Am)Ho H33)055 + Ac(1 + Am)H33H» DY — AmHo3H33BY (61)

ABY = %{[Hasz = (14 Ze)H3tH] 055 + 7 (1 + Ze) HnH33 By — JeH3Hn DY}, (62)
where

1’] = H22H33(1 + )Le)(l + )vm) 7H223

We define the intensity factor vector as

k = (ko kp, ks)" = 1im V2r(x — a)" ¢, (x1). (63)

xX|—a ’
Substituting Eq. (34) together with Eq. (39) into Eq. (63) results in
k = /ma(a35, ADF, ABS) (64)
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in which AD3° and ABS° are determined from Eqs. (61) and (62). Eq. (64) shows that the stress intensity
factor relates to only the applied mechanical load, while the electric/magnetic intensity factors are
dependent on mechanical and electric-magnetic loads, material constants as well as the values of A, and Ay,
which are related to the crack opening.

4. Energy release rate

Zhang et al. (2002) discussed in detail that four thermodynamic potentials can be used to calculate the
energy release rate for crack propagation in a piezoelectric material. The general energy balance for an
infinitesimal crack extension can be written in the form

OP = oW — dU, (65)

where W is the generalized work done by external mechanical and electrical-magnetic loads, U is the
generalized mechanical and electrical-magnetic energy stored inside the body of interest, and 0P denotes
the change in the potential during creating the new crack surface. The generalized work and the generalized
stored energy are given by

W = /(O’,,n,u, + D,-n,-qo —+ B,-n,-lk)dr7 (66)
r

U= / /Q hdQ, (67)

respectively, where I denotes a sufficiently large contour around the crack, Q is the integration domain
enclosed by I', u; is the mechanical displacement, D;n; and B;n; are the prescribed boundary values of the
electric displacement and the magnetic induction, respectively, and # is the electric-magnetic enthalpy per
unit volume that

1 1 1
h= EUUSU - EDiEi - EBiH[' (68)
The energy release rate, G, is defined as
1 0P
=55 (69)
where
P=w-U. (70)
Using Egs. (70), and (66)—(68), we have
1
P:——/dd)T-u. (71)
2 J)r

In the present work, we assume that the crack or cavity propagate in a self-similar fashion. Based on the
assumption and some algebraic manipulations, we obtain, by using Egs. (71), (20) and (21) that
na

G:
4

>1 Hll,,, (72)

foe]
where

Iy = [0%3, D5 — DY, BY — BY]'. (73)



6622 C.-F. Gao et al. | International Journal of Solids and Structures 41 (2004) 6613-6629

Since Xy, = I + D) + 389, Eq. (72) can be rewritten as
na

which can be further simplified as
1
G = JK"HK + %i}HHZOQDg + %gHHZng, (75)

where k is the intensity factor vector defined by Eq. (64).
Eq. (74) or (75) can be further simplified for special cases. For electrically and magnetically impermeable
cracks, DY = B = 0, Eq. (74) becomes

G =5 (0% DF . BY) (o35, D BY)" (76)
or

G= 1k§n Hkipp, (77)

4 P

where ki, is the intensity factor vector for impermeable cracks that

Kinp = v/7a(0%5, D5, BY)". (78)
For a permeable crack, 1. = 4, = 0, one has from Eqgs. (61) and (62) that

ADY = DY — D) = —cpoy (79)

ABY = BY — B) = —cp055, (80)
where

= Hy\Hyz — HyHyy oy = Hy Hy — HypHy

HypHy; — H3y HyHy; — H3,

In the mean time, using Eq. (73), one obtains

iy HIT,,, = Hy 035 + Hy (DY — DY) + Hy (B — BY). (81)
Substituting Egs. (79) and (80) into Eq. (81) leads to
ilHII,,, = 0. (82)

Similarly, we have
i,HIl,, = 0. (83)
Substituting Egs. (82) and (83) into Eq. (74) leads to

G= e (0%, DY — Dy, B — By)H(0%5, Dy — Dy, B — B(z))Ta (84)
that is
1
G= Zkngp, (85)

where k,, is the intensity factor vector for the permeable crack in the form of Eq. (64), in which the AD5° and
AB% are given by Egs. (79) and (80). In summary, for a permeable crack, we have
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EY=E*, H'=H> (86)

DY = D5 + cpo, (87)

B) = BY + c03, (88)

k, = /macsy, kp=—cpks, ks = —cghs, (89)

G =T H; (0)(03)’, (90)
where

B HYHss — 2H,HysHsy + HEHay

Hi1(0) = Hy HyyHss — H?
: 23

o1

For a semi-permeable crack, /. and /, have finite non-zero values. In this case, Eq. (72) can be expended
into
4G/T[Cl = (7;3(1’1110';3 —|—H12D§O +H1333C) + AD;C(HH(T;; —|—H22D§O +H23Bc2>c)

Below we present explicit expressions of G for some special cases by substituting Egs. (61) and (62) into Eq.
(92):

(1) If only 635 is applied, the result of (92) is

na -

G =", (%), 93)

where

H2H33(1 + Ay) — 2HyHosHsy + H2Hy (1 + 2,
H, —H, — 2 3(1 4 Am) 12412310131 + 3 222( + ) (94)
HpHy(1 + 2) (1 + An) — HE
For A. = 4, = 0, Eq. (94) reduces to
H%LHyy — 2H 2 HysHyy + HEH.
H, = Hyy — 2228 2Tl TSR g (o), (95)
HyHys — Hyy

In this case, Eq. (93) becomes (90).

(it) If only D5° is applied, we have from (92) that
na
where
JeHpnHZ — 2e(1 + A HZH
1 = oty = 2L )y o7)
HypHy3(1 + 2¢)(1 + Am) — H;
(iii) If only BS° is applied, we have
na
G=—— Hy(BY), (98)

4
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where

 ImHynH — Jon(1+ 20 2 H
HyHy(1+ 2e)(1 4+ Am) — Hy

Hp

5. Numerical results

Consider a BaTiO;—CoFe,O, composite, where the matrix is the CoFe,O4 and the reinforced phase is
the BaTiO;. Material constants of each phase can be found in the work of Li and Dunn (1998). Obviously,
the effective properties of the composite depend on the volume fraction of its constituents. Many investi-
gators, e.g., Li and Dunn (1998), Huang et al. (2000), Wu and Huang (2000), Li (2000), Aboudi (2001),
Chen et al. (2002) and others, have investigated the effective properties of magnetoelectroelastic composites
based on different approaches. Recently, Sih and Song (2003) presented some effective properties of the
BaTiO3;—CoFe,0, composite for different volume fraction of BaTiO;. In the following numerical calcula-
tion, the used effective elastic and piezoelectric properties for a model piezoelectric/magnetic composite are
selected as follows:

cu=43x10° Pa, e5=11.6C/m? x;; =11.2x 107 C*/Nm?
diy =0, qis=550N/Am, p;; =59 x10"°Ns*/C.

In addition, the dielectric permittivity and the magnetic permeability of air are respectively:
Ko =8.85x 10712 C*/Nm?, y, = 1.26 x 10°° Ns?/C%.

Numerical results are presented in Figs. 2-11, in which G = 4G/na. The units of 635, D3*(DY), By (BY) and G
are in Pa, C/m?, N/Am and N/m, respectively.
The numerical results for the selected model material are summarized as follows:

(1) Fig. 2 illustrates the electric field inside the crack as a function of . under a load of ¢35 = 10°,
By =107", or D¥ = 107° only, whereas Fig. 3 plots the magnetic field inside the crack as a function
of Ay under a load of ¢35 = 10%, B = 107, or D* = 107* only. The results show that the signs of
the electric field induced by the applied mechanical and magnetic loadings are opposite to that induced
by the applied electric field, and the signs of the magnetic field induced by the applied mechanical and
electric loadings are opposite to that induced by the applied magnetic field. When 4, = 4,, = 0, i.e., for

1.0E-5

-1.0E-5

-2.0E-5

Fig. 2. DY vs. Z. under the load of ¢35 = 10°, B3 = 107!, or DX = 107> only.
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5.0E-4+

-5.0E-4

-10.0E-4

Fig. 3. BY vs. Zm under the load of 655 = 10*, B = 1073, or D = 10~ only.

-4.0E-4 -2.0E-4 0 2.0E-4 4.0E-4
T T T 2

Fig. 5. The effect of 2. on the energy release rate, G, under purely electrical loading.
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-0.04 -0.02 0.00 0.02 0.04

Fig. 6. The effect of A, on the energy release rate, G, under purely magnetic loading.

-10E-94

Fig. 7. G for an impermeable crack under combined mechanical-electric loadings.

G

Fig. 8. G for an impermeable crack under combined mechanical-magnetic loadings.
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©
0-3 2

Fig. 10. G vs. D5 under combined loading for a semi-permeable crack with the ratio « = b/a = 1072

permeable cracks, the electric (or magnetic) field inside the crack is independent of the applied magnetic
(or electric) field. For an impermeable crack, /. — oo and 4, — oo, both the electric and magnetic fields
approach zero.

Figs. 4-6 show the influence of crack permeability on the energy release rate under different loading
conditions. Under purely mechanical loading, the energy release rate G is always positive (Fig. 4). A
permeable crack gives the highest value of G, while an impermeable crack yields the lowest value of
G. If a purely electric or magnetic field is applied, the energy release rate is zero for a permeable crack,
and negative for an impermeable or semi-permeable crack, as shown in Figs. 5 and 6. For a permeable
crack under combined mechanical, electric and magnetic loading, the energy release rate is dependent
on only the mechanical load, which is shown by the curve for 1. = 0 in Fig. 4.

Figs. 7 and 8 show, respectively, the effects of the electric and magnetic fields on the energy release rate
for an impermeable crack. For a given mechanical tension load, the electric/magnetic fields can either
increase or decrease G, which is dependent on the ratio of the applied electric/magnetic loading to the
applied mechanical loading.
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Fig. 11. G vs. B5° under combined loading for a semi-permeable crack with the ratio « = b/a = 1072

(4) Figs. 9-11 give the energy release rate of a semi-permeable crack with a value of « = b/a = 1072, Under
combined loading, the energy release rate can be positive or negative under an electric or magnetic load,
depending on the value of the applied mechanical load, as shown in Fig. 9. For a given electric/magnetic
loading, the mechanical load must reach a critical value before the energy release rate becomes positive.
Obviously, the critical value of the mechanical load depends on the strengths of the electric/magnetic
load. Fig. 10 shows the energy release rate as a function of the applied electric load, D5°, with
BY =0 and 65 =0, and By =0 and 05° = 10°. In the absent of mechanical loading, both positive
and negative electric loads lower the energy release rate. However, if a mechanical loading is applied
also, a negative electric load decreases G, but a positive electric load can either increase or decrease
G. This means that, for a fixed mechanical load, the effect of positive electric loading on the fracture
behavior can be different from that of negative electric loading. Similarly conclusions can be drawn
from Fig. 11 for the effects of magnetic loading.

6. Concluding remarks

Based on linear magnetoelectroelasticity, we study a crack in a magnetoelectroelastic solid under anti-
plane deformation. To take the effect of the electric/magnetic fields inside the crack into account, the crack
is modeled as a slender elliptical cavity containing air. Then, explicit expressions of the energy release rate
are given for the elliptical flaw. Numerical results are also presented to show the variation of electro-
magneticelastic fields inside the crack and the values of the energy release rate with the flaw size. For a
mathematical permeable crack with zero width, theoretical results show that the energy release rate is
independent of the applied electric/magnetic loading. However, for a crack with a finite non-zero width,
numerical results for a selected model material show that an applied magnetic field can induce a high
electric field inside the crack and vise versa. In the absence of mechanical loading, an applied electric or
magnetic load always tends to retard crack growth. However, in the presence of mechanical loading, an
applied negative electric or magnetic load retards crack growth, while an applied positive electric or
magnetic load can enhance or retard the growth. But, when the applied electric or magnetic load reaches a
sufficiently high value, whether positive or negative, it always retards crack growth, even in the presence of
mechanical load. In other words, the effect of electric/magnetic fields on the fracture behavior is mechanical
load-dependent.
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Finally, it should be noted that although the theoretical approach developed in the present study is for
anti-plane deformation, it is very similar to the Stroh formalism of generalized 2D deformation. Therefore,
we may call it the Stroh formalism for anti-plane deformation. The advantages of the Stroh formalism for
anti-plane deformation lie in that it is much easy to be used and the obtained results can be readily checked
by the conventional complex potential approach. Once one gets used to the Stroh formalism for anti-plane
deformation, he/she can employ the Stroh formalism to explore general deformation problems without any
difficulty.
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